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In this note we improve the asymptotic aspect of the error bounds recently
given by Hall [4] for an interpolation scheme using piecewise bivariate cubic
polynomials which was suggested by Birkhoff. We make an essential use of
a new "Peano kernel" type result of Bramble and Hilbert [3]. The results
of this note are useful in giving sharp a priori error bounds for the Rayleigh­
Ritz-Galerkin method used to approximate the solution of boundary value
problems for elliptic partial differential equations. Throughout this note, K
will denote a positive constant not necessarily the same at each occurrence.

Let R be any right triangular polygon in the x - y plane, i.e., R is the
union of right triangles, R =:: U:'~l T" such that T s n T1JI , 1 ~;: S, In k,
is either void or a side of T s and a side of T", . We are interested in interpo­
lating smooth real-valued functions on R by means of continuous, piecewise
bivariate cubic polynomials p(x, y), i.e., by means of functions belonging to
SR' where

, {p(x, y)1 for each 1 ,;: s k, there exist real constants,

S R ~ a;j such that p(x, y) = I a;jxiyi for all,
O,,;;i+j<3

(x, Y) E T" and p(x. y) E CO(R)}.

Moreover, if the function to be interpolated vanishes on the boundary of R,
we may want the interpolants to do the same, i.e., to belong to SRo =0

[p E SR i p(x, y) = 0 for all (x, y) in the boundary of R}.
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We start by considering a single right triangle, Ll, with vertices at (0, 0),
(a, 0), and (0, b). Here pc,=, S,j is the set of all restrictions to Ll of bivariate
cubic polynomials. Clearly the dimension of P as a vector space is 10.

We define an interpolation mapping ~ from C2(Ll) to P by

. . . 8
"
i·. . .

(D',Jf,jf)(O, O) .=0 (8 . n . J,j/) (0,0) = D',Jji(.O,O), 0,(; i, .i cs.; I, (.1)
x' oy'

(Di.if,jf)(O, b) = D,·if(O, b), 0 ~:;; i +.i ,(; I, (2)

and

(Di,jf,jf)(a, 0) = Di.if(a, 0), 0 cs.; i .C- j :s:; I,

for allfE C2(Ll).
We have through [4] the following theorem.

(3)

THEOREM I. The interpolation mapping ~ is well defined, i.e" ~f exists
and is unique for all f E C2(Ll).

COROLLARY. ~1T = 1T for all pEP.

Now we define a mapping f of C2(R) into SR as follows: If

where
I(x, y) E C2(R),

sex, y) ~c Yr/{;)(x, y)

f/(x, y) ,~ sex, y),

for all (x, y) E Ti , I:S:; i :s:; k, (4)

and .f~ denotes the restriction of f to Ti , As corollaries of Theorem L we
have the following theorem.

THEOREM 2, f is well defined from C2(R) to SR and yes) = s for all
SESR •

Proof'. Clearly the restriction of j(f)(x, y) to T j is in P for all 1(; i k,
The continuity of Y(f) follows from the proof of Theorem I. Q.E,D,

THEOREM 3, f is well definedfrom

Co2(R) = (fE C2(R) I f(x, Y) = Ofor all (x, y) E oR:

to SRO and ,P(s) = sIal' all s E SRO,

After introducing some additional terminology, we discuss error bounds
for the preceding interpolation scheme. If.i is a nonnegative integer and
I ."( P ~ 00, we define the Sobolev norm

Ilfl:wi,P(RJ .~ ( I r' D"·Ij(X, y)jJ' dx dyt
'J

for all fE C'''(R).
O'(k,1 <) ~ R '
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(5)

Moreover, we let Wi,P(R) denote the completion of CX(R) with respect to
I! . ',IWi,P(R) and W~,P(R) denote the completion of Cow(R) with respect to

Ii' ilwj,P(R) .

A collection, 'ff, of right triangular polygons, R, is said to be regular if
and only if there exists an E > 0 such that E ~ infRE~ inf1<i<k

R
h;/Hi' where

Hi and hi denote the lengths of longest and shortest sides of the triangle
T" 1 ,:;; i ::;; k R • We shall write HR = max1<i<k

R
Hi.

THEOREM 4. Let '(/ be a regular collection of right triangular polygons.
Iff E W4.P(R), (resp. W~,P(R», for R E '{/, where p > 1, then ff E SR' (resp.
SRO), is well defined and there exists a positive constant K such that for j = 0, 1
and all R E '(/

ilf - Jfliwi,q(R) ::;; K(HR)4-i (L [I Dm'YI[~o'P(R)(jI
m+-j=4

for all q ::;; p, and

'I f - Jfll· <. K(H )4-i-(ZIP)+(Z/q) ( '\ I' Dm,ifllP )l/P
I, w"q(R) ~ R t... II . 'WO,P(R) ,

m+j=4

for all q ?;: p.

(6)

Proof. We consider only the case of j = 0, since the proof for the case
of j = 1 is essentially identical. By the Sobolev imbedding theorem FE C2(R),
and, hence, the interpolation mapping f is well defined. Let LI denote the
standard right triangle with vertices at (0, 0), (1, 0), and (0, 1).

Clearly, there exists a positive constant K such that

If(x, y) - JLJf(x, Y)I ::;; K sup L I Dm,J!(x, y)!
(X,Y)ELJ 0<m,i<1

for all (x, y) E LI and all fE C2(L1). Moreover, since f.J7T = 7T for all7T E 9,
we may apply a Peano kernel type result, corollary to Theorem 2 of [3],
which states that if (I - F) is a linear functional on ct(L1) such that there
exists a positive constant C such that

1(1 - F)(u)1 ::;; C sup L I Dm,iu(x, Y)l
CI:,Y)ELl 'I'n+j~t

and (I - F)(p) = 0 for all polynomials, p(x, y), of degree k > t ?;: 0, then
for p > 2/(R - t) there exists a positive constant K such that

i F(u) I ::;; K L Ii DlII,ju 'lwo,p(LJ) ,
'iJl+j,,,,,l:
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We conclude that there exists a positive constant, again denoted by K, such
that for all p > 1

jf(x, y) -~ .ftJf(x, y), K I D,I/·jlilwo.v(tJ)
!II ij=-1

By a standard argument, involving a change of the independent variables,
cf. [1] and [3], we have, using the regularity of '(',

Il(x, y) - .fl(x, y)! .0( K(HY-12/)I) I II DHI,jjj,WO.l'ITi) , (7)
"i:-j=J

for all (x, y) E Ti,fE W4·1'(R), I ; kR , and all R E 'if.
To prove (5) we note that by inequality (7). if q p,

kR

I Ilf - Jfl~,o.1'ITi)
i=l

kR ' p

K(HR)IP I ( I !. D"'·jiiwo'.IT
i
»)

l;;.--lm-j--Jo;;"4

kR

,.:;; K(HR)4P I I II Dm'YII~o,P(T" = K(HR)4P I II Dm,jfl,~o,PIR) ,
i=l rn+j=4 m t-j=4

where we have used Jensen's inequality to obtain the last inequality.
To prove (6) write

and I
J!1--j",-,4

for all I ; k R • By (7), Vi K(H;)4-12/J'). 12/")H'i'

by Jensen's and Holder's inequalities, we have
k R • Hence,

K(H
R

)4-(211') I (21<,) ( I
ni-i-j=,l

Q.E.D.
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By making minor changes in the proof of Theorem 3, it is possible to
obtain the following result.

THEOREM 5. Let '(/ be a regular collection of right triangular polygons. If
f E W3·J!(R), (resp. Wg,P(R)), for all R E re, where p > 2, then Jif E SR , (resp.
SRO), is well defined and there exists a positive constant, K, such that for
j = 0, 1 and all R E r,

U - Jfl:wj,qrRI oS; K(H R)3-j ( I II Dm·fl:~o.prRY/P, (8)
m 1-)-=3

for all q 0( p, and

Ilf - 5fl'I' ,;:: K(H )3-J-(2!)J)j'(2 I Qj (~. 1/ Dm.jrillJ )l!/I
, " W,·q(R) ~~ R 1... ,: ,/ WO.V(RI '

m+j=-":l

for all q ;:?: p.

(9)

We now turn to the application of Theorems 4 and 5 to obtaining error
bounds for the Rayleigh-Ritz~Galerkinmethod for approximating the solu­
tions of elliptic partial differential equations. In particular, we let Q be a
closed convex polygon in the plane, Q == Q - 8Q, and consider the problem
of approximating the solution of

-DI.O(p(X, y) DI.OU) - DO,I(q(X, y) DO.IU) + rex, y)u = f(x, y), (10)

for all (x, y) E Q,

u(x, y) = 0, for all (x, y) c= aQ, (II)

where p(x, y) and q(x, 3) are positive, real-valued, Cl(Q) functions, rex, y)
is a nonnegative, real-valued, C(Q) function, and i(x, y) is a real-valued
function in WO. 2(Q), by the Rayleigh-Ritz~Galerkinmethod. That is, if S
is a finite dimensional subspace of WJ,2(Q), we must determine Us E S such
that

J p(x, y) Dl.Ous DJ.o'f! dx dl':- r q(x, y) DO.lus DO,lrp dx dl'
Q <Q

+- r rex, y) Usrp dx d.r = JI(x, y) rp dx dy,
<Q Q

(12)

for all rp E S.
Using the results of [2] and [5] and Theorems 4 and 5, we may establish

the following error bound for the Rayleigh-Ritz-Galerkin method. The
reader is referred to [5] for the precise details of the proof.
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THEOREM 6. Let '{j be a regular collection of right triangular polygonal
partitions, R, of n and for each R E C, let SRO denote the finite dimensional
space ofpiecewise, bivariate cubic polynomials with respect to R which vanish
on the boundary of Q. Under the above hypotheses, problem (lO)~(l I) has a
unique solution, u, U E W 2,2(Q), and il' UR denotes the Rayleigh~Ritz-Galerkin

approximation in SRo then there exists a posiliL'e constant, K, such that

u ( ]3)

for all R E'(, and all U E WJJ·2(Q), where 2 fJ 4.

We remark that the exponent of H in (13) is "best possible" for the class
of solutions under consideration.
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